Hviezdy

8. října 2009 v 20:10 | Elsa |  Vesmír
Hviezda (nesprávne tiež stálica) je plynné (plazmové), približne guľovité teleso vo vesmíre, ktoré má vlastný zdroj žiarenia, ktoré drží pokope jeho vlastná gravitácia a ktoré má hmotnosť 0,02 až 100 hmotností Slnka. Vo hviezdach je sústredená väčšina pozorovateľnej hmoty vesmíru.
Hviezda v starom chápaní bola každý objekt na nočnej oblohe ako planéta, kométa atď okrem Mesiaca. V užšom astronomickom význame sú to plynové guľovité objekty, ktoré majú vlastný zdroj žiarenia. V minulosti patrili k hviezdam len stálice, čo bolo odvodené od skutočnosti, že sa na nočnej oblohe zdanlivo nepohybujú na rozdiel od bludíc (planét). Dôsledkom tejto zdanlivej nehybnosti utvárajú veľmi výrazné konfigurácie hviezd na oblohe, ktoré poznáme ako súhvezdia. V skutočnosti sa vo vesmíre pohybujú hviezdy obrovskou rýchlosťou až niekoľko sto kilometrov za sekundu, ale vzhľadom na ich obrovskú vzdilenosť sa voľným okom pozorovateľné zmeny v polohách hviezd prejavia až za storočia až tisícročia.
Najbližšou hviezdou k Zemi je Slnko, vzdialené približne 149 597 871 km. Keďže vzdialenosti hviezd od Zeme bývajú väčšinou obrovské, nemá zmysel vyjadrovať ich v kilometroch. Často sa vzdialenosti uvádzajú v jednotkách času, za ktorý priletí svetlo z hviezd na Zem. V tomto ohľade je Slnko od Zeme vzdialené asi 8,5 svetelných minút. Druhou je Proxima Centauri, vzdialená 4,3 svetelných rokov. Ďalšou používanou jednotkou na určenie vzdialenosti hviezd je tzv. parsek, ktorý má hodnotu asi 3,26 svetelného roka. Vzdialenosť jednotlivých hviezd od seba vo vesmíre je rôzna. Môže byť od niekoľkých svetelných hodín až po desiatky svetelných rokov.

Ich látka je plazmou, niektoré hviezdy pozostávajú z degenerovaného plynu (poznáme ho u bielych trpaslíkov alebo neutrónových hviezd). Vlastnosti hviezd sú hmotnosť, svietivosť, polomer, teplota, spektrálny typ, hustota atď. Najvýznamnejšou charakteristikou hviezd je ich hmotnosť, ktorá určuje ich štruktúru a vývoj. Stredná hmotnosť hviezd je polovica hmotnosti Slnka. Polomery hviezd môžu byť 3000-krát väčšie než je polomer Slnka, na druhej strane najmenšia hviezda by sa zmestila do Liptovskej Mary. Hviezdy, ktoré vidíme voľným okom na oblohe majú menšiu zdanlivú jasnosť ako magnitúda 6. Čím je hviezda slabšia, tým je jej magnitúda väčšia.
Z chemického hľadiska sú hviezdy zložené predovšetkým z vodíka a hélia. Výskyt ostatných prvkov nie je pri všetkých hviezdach rovnaký. Chemické zloženie hviezd sa časom mení v dôsledku termonukleárnych reakcií.
Hviezdy majú rôzne fyzikálne vlastnosti, ktoré sa v určitých hraniciach líšia. Veľkosť hviezd kolíše v rozhraní od veľkosti desiatok kilometrov (neutrónové hviezdy) až do veľkosti tisícnásobkov priemeru Slnka (nadobri - napríklad Polárka). Množstvo hmoty tvoriacej hviezdy je fyzikálnymi zákonmi obmedzené, a to asi od 1/10 hmoty Slnka (červení trpaslíci) do stonásobku hmoty Slnka (Trumplerove hviezdy). Hviezda s väčšou hmotnosťou ako 100 hmotností Slnka nemôže existovať, pretože silný tlak žiarenia v jej vnútri by ju roztrhal skôr, ako by dosiahla hlavnú postupnosť.
Povrchové teploty hviezd kolíšu rádovo od tisíc stupňov až po milión stupňov (neutrónové hviezdy).
Priemerná hustota hmoty sa pohybuje od 1 / 10 000 000 (červení nadobri) až do 1 000 000 gramov na cm3; (bieli trpaslíci) a neutrónové hviezdy majú hustotu hmoty až 100 miliónov ton na cm³. Teplota a hustota plynov smerom do vnútra hviezdy rýchlo narastá.
V jadrách hviezd pri obrovskom tlaku a teplote prebiehajú termonukleárne reakcie, ktoré sú zdrojom žiarenia hviezd. Aj rýchlosť rotácie a intenzity magnetického poľa hviezd je rôzna.

Vnútorná stavba hviezdy

Hviezdy hlavnej postupnosti majú vo svojom vnútri veľmi podobnú stavbu. Rozdiely sú len v teplotách, od ktorých závisí aj to, aký typ jadrovej reakcie v hviezde prebieha. Vrstvy hviezdy smerom z vnútra von sú:
  • Jadro - najhorúcejšia a najhustejšia časť hviezdy. Tu prebieha jadrová syntéza.
  • Vrstva žiarivej rovnováhy - veľmi hrubá vrstva plazmy, ktorá obklopuje jadro. Fotóny elektromagnetického žiarenia, ktoré vznikli v jadre, prechádzajú touto vrstvou veľmi pomaly a ich vlnová dĺžka klesá. Kvôli veľkej hustote prostredia je fotón neustále pohlcovaný a vyžarovaný okolitou hmotou.
  • konvektívna zóna - ešte chladnejšia vrstva hviezdy, v ktorej sa energia prenáša prúdením. Vrcholky zostupných a vzostupných prúdov môžeme vidieť na povrchu hviezdy ako útvary zvané granuly.
  • fotosféra - viditeľný (nie však pevný) povrch hviezdy. Je to najchladnejšia časť hviezdy, pri veľmi chladných hviezdach alebo v oblasti hviezdnych škvŕn (slnečných škvŕn) sa tam dokonca udržia chemické zlúčeniny.
  • Chromosféra - spodná časť atmosféry hviezdy. Teplota v chromosfére opäť začína stúpať.
  • koróna - najvrchnejšia, najhorúcejšia a najmenej hustá vonkajšia atmosféra hviezdy, ktorá sa postupne rozplýva do medzihviezdneho priestoru.

Jasnosť

Hviezdy na oblohe majú rôznu jasnosť, ktorá je iba zdanlivá, pretože ju skresľuje ich vzdialenosť. Jasnosť hviezd na oblohe určujeme tzv. vizuálnymi magnitúdami. Najjasnejšia hviezda Sírius má magnitúdu -1,43, Vega 0,03, Polárka 2,13 a Slnko -26,7. Najslabšie hviezdy, ktoré vidíme ešte voľným okom, majú magnitúdu 6 a najslabšie hviezdy zachytené ďalekohľadmi na fotografických doskách majú magnitúdu až do 30.

Vznik

Hviezdy vznikajú z chladných a riedkych prachových a plynových mračien. Mračnom nemyslíme čosi ako pozemské oblaky, v skutočnosti sú tieto mračná nesmierne riedke a predstavujú lepšie vákuum, aké sme schopní na Zemi vytvoriť, ich hustota býva iba niekoľko atómov na centimeter kubický. Tieto mračná sa nazývajú tiež hviezdotvorné hmloviny. Ide prevažne o emisné hmloviny. Príkladom takých hmlovín, v ktorých vznikajú hviezdy, je Veľká hmlovina v Orióne, alebo Orlia hmlovina.
Jednotlivé molekuly tohto mračna na seba pôsobia gravitačnou silou, čo má za následok, že sa priťahujú a pomaly hýbu. Kvôli veľmi malej hmotnosti jednotlivých častíc a obrovským vzdialenostiam medzi nimi je to veľmi dlhodobý dej, ktorý však môže byť vonkajšími vplyvmi urýchlený. Napríklad sa môže stať, že popri takomto oblaku medzihviezdnej hmoty prejde nejaká hviezda a svojou gravitáciou spôsobí pohyb molekúl v mračne. Alebo v jeho blízkosti vybuchne supernova a tlaková vlna opäť mračno premieša. V oboch prípadoch sa dajú častice do pohybu a v miestach, kde sú zhluky najväčšie, utvoria sa jednotlivé gravitačné centrá, ktoré priťahujú ďalší materiál. Tieto gravitačné centrá sa nazývajú globuly. Ide o chladné a v porovnaní s okolitým priestorom husté tmavé prachoplynové hmloviny približne guľatého tvaru. Typickým príkladom globuly sú napríklad Thackerayove globuly v hmlovine IC 2944.
Hmota okolo každého z týchto zhlukov do nich postupne padá, pričom jednotlivými zrážkami a premiešavaním molekúl vzrastá aj teplota látky. Tá rastie spolu s veľkosťou zhlukov, až sa za z astronomického hľadiska krátky čas z každého takéhoto chuchvalca hmoty vytvorí guľa zhruba o veľkosti slnečnej sústavy, ktorú nazývame protohviezda.
Po dosiahnutí takejto veľkosti sa začne jadro protohviezdy ohrievať, postupne ohrieva aj okolitú látku a premiešava ju. Ohriata látka zo stredu stúpa k okrajom, tu sa ochladí a klesá k jadru, kde sa znova ohreje, pričom tento dej sa veľaráz opakuje. Hviezda sa nachádza v tzv. Hyashiho štádiu, pri ktorom sa teplota na povrchu mení len málo.Takáto guľa ešte nežiari vo viditeľnom svetle. Je na to príliš chladná, niečo cez dvetisíc stupňov na povrchu. Je to ale dosť na to, aby mohla žiariť v infračervenom obore. Toto štádium predstavuje zárodok budúcej hviezdy.
Teplota protohviezdy sa postupne zvyšuje. Každé pôvodné kondenzačné centrum nabaľuje na seba ďalší okolitý materiál, ktorého je však v hmlovine stále menej, pretože jednak sa míňa ako ho na seba priťahujú budúce hviezdy a jednak je odfukovaný hviezdnym vetrom, ktorý z novovznikajúcich hviezd začína prúdiť. Medzihviezdny materiál sa teda časom nabalí alebo odfúkne a budúca hviezda stratí možnosť zväčšovať svoju hmotnosť, v gravitačnej kontrakcii a s tým spojeným zahrievaním jadra však ďalej pokračuje. Pozorovania naznačujú, že aj najväčšie protohviezdy nemajú viac ako zhruba 60-násobok hmotnosti Slnka. Pri asi 50% až 70% mladých hviezd sú nepriame dôkazy o existencii protoplanetárneho disku. Je to disk zbytkového materiálu, z ktorého sa môžu (ale nemusia) utvoriť planéty. Životnosť protoplanetárneho disku je ohrozená, ak je v okolí viacero mladých hviezd. Tie môžu svojím hviezdnym vetrom spôsobiť eróziu a postupný zánik disku.
Doteraz bola zdrojom energie iba gravitačná kontrakcia. V určitom štádiu, keď zvyšujúca sa teplota v jadre dosiahne niekoľko miliónov stupňov, vystúpi na scénu ďalší zdroj: termojadrová reakcia. To znamená, že teplota a tlak v jadre sú dostatočne silné na to, aby došlo k jadrovej premene prvkov. Tento okamih sa považuje za okamih vzniku hviezdy. Gravitačná kontrakcia protohviezdy sa zastaví, pretože energia vznikajúca termonukleárnymi reakciami vyrovná gravitačný tlak a zabezpečí na dlhé obdobie rovnovážny stav hviezdy, ktorá sa "usadí" na hlavnej postupnosti H-R diagramu. To sa však podarí len protohviezdam s hmotnosťou väčšou ako 0,085 hmotnosti Slnka. Menej hmotné protohviezdy nie sú schopné kontrakciou zahriať svoje centrálne časti na takú teplotu, aby v nich mohlo dôjsť k jadrovej fúzii a stanú sa z nich tzv. hnedí trpaslíci žiariaci prevažne v infračervenom obore, kým nevyčerpajú svoje obmedzené zdroje.
Najprv dochádza k premene ľahších prvkov, ako deutérium, lítium, berýlium či bór. Pri dosiahnutí teploty okolo 10 miliónov stupňov dôjde k jadrovej reakcii, v ktorej sa uplatňuje protón-protónová reakcia (PP cyklus). Dochádza k vytváraniu jadier hélia z jadier vodíka. Vytvorením nového prvku sa uvoľňuje energia potrebná pre život hviezdy. Proti tlaku energie vyžarovanej hviezdou pôsobí v opačnom smere jej gravitačná sila, hovoríme, že hviezda je v hydrostatickej rovnováhe.
Takýmto spôsobom sa spaľuje vodík a popolom tejto reakcie je hélium. Celý proces začína v jadre. Časom sa však všetok vodík v jadre minie. Vtedy sa centrálna časť hviezdy trochu stlačí a načnú aj vyššie vrstvy. Začína sa spotrebúvať vodík z okolitého plášťa a celý proces sa postupne posúva smerom k povrchu. Po celý ten čas klesá ťažšie hélium smerom k jadru, kde sa hromadí. Pretože héliové hviezdne jadro je ťažšie ako vodíkové, vlastnou váhou sa stláča, čím sa zvyšuje jeho teplota. Po dostatočnom zvýšení teploty sa začne ďalšia jadrová reakcia, pričom sa začnú vytvárať ďalšie prvky. Takýmto spôsobom postupne dochádza k fúziám stále ťažších prvkov, napr. uhlíka, dusíka, kyslíka, aj inertných plynov ako napríklad neónu.

bude aj pokračovanie:D:D:D
 

Buď první, kdo ohodnotí tento článek.

Anketa

ok...ČO CHCEŠ!!!???!!!

čččččo???... 14.3% (8)
jaaa???..niiiiiiič...vobeeeec..... 12.5% (7)
HOVNO!!! 53.6% (30)
hnnnnnnnnnnn?? 8.9% (5)
pytala si sa čosi?? 10.7% (6)

Nový komentář

Přihlásit se
  Ještě nemáte vlastní web? Můžete si jej zdarma založit na Blog.cz.
 

Aktuální články

Reklama